BY4 January 2014

Q	uestion	Marking details	Marks Available
1	(a)	There more {microorganisms/ bacteria/ fungi} in indoor air than outdoor air samples;	1
	(b)	(Different) pH; (Different) C {source/ concentration}; (Different) N {source/ concentration}; (Different) growth factors: {Different/ different concentration} Vitamins/minerals; NOT nutrients Any 4 1 mark per pair	max 2
		Question 1 total	[3]

Question		Marking details	Marks Available	
2	(a)	Legumes/ leguminous;	1	
	(b)	Contain nitrogen fixing bacteria/ OWTTE; (must be correct context, not plant fixing nitrogen) Such as <i>Rhizobium;</i> (Some) {nitrogenous compounds/ ammonium ions/ ammonia/ amino acids} pass to the <u>plant;</u> NOT nitrate/ nitrogen Allows the plant to grow in poor soil/ used for {amino acid/ proteinsynthesis};	max 3	
	(c)	Nitrosomonas converts ammonia to nitrites; Nitrobacter converts nitrites to nitrates; Accept diagram/equation Which the plant can {absorb/take up} (from the soil); And use for {nucleic acid/eq or protein synthesis};	max 3	
		Question 2 total	[7]	

Question			Marking details	Marks Available
3	(a)		milliVolts/mV; NOT microvolts	2
			milliseconds/msec/ ms;	
	(b)		A Resting potential;	4
			B Depolarisation	
			C Repolarisation;	
			D Hyperpolarisation/ refractory ;	
	(c)	(i)	Threshold (potential);	1
		(ii)	Failed to reach threshold potential;	max 2
			All or nothing response;	
			-55;	
			So (too few) sodium gates opened/not enough depolarisation;	
			Question 3 Total	[9]

	Question	Marking details	Marks Available
4	(a)	 Low water levels in blood/high osmotic potential/low Ψ; Detected by osmoreceptors; In hypothalamus; (More) ADH secreted from (posterior lobe of) pituitary; {Into/travels in} blood to; {collecting duct/distal convoluted tubule}{ becomes more permeable/more aquaporins/ more water channels in membranes}; Water absorbed; Because of low Ψ in medulla; 	max 6
	<i>(b)</i> (i	As plasma solute concentration increases to 282 there is no increase in ADH/ the concentration of ADH remains constant; After 282 there is {a proportional/ rapid} increase in ADH; (increase must be qualified)	2
	(ii	(Up to 293 au) ADH can achieve sufficient water reabsorption/ OWTTE; After this point {water needs to be taken in/ by drinking} to avoid dehydration;	2
	(c)	Blood loss/vomiting; NOT dehydration/ anaemia	1
		Question 4 Total	[11]

Question	Marking details	Marks Available

5 *(a)*

	Name of stage	Precisely what is happening in the
		culture
Α	Lag;	Cells are rehydrating/
		Yeast is synthesizing enzymes/ gene
		activation;
		NOT adapting/ acclimatizing/DNA
		replication
В	Log/Exponential;	Cells are {dividing/budding/ replicating/
		fission} (at maximum rate) eq; NOT
		rapid growth
С	Stationary;	Cells are dying in equal numbers to
		those produced by division;
		NOT births=deaths
D	Decline/death;	There is a build up of ethanol which is
		killing the cells;

(b) Pyruvate is converted to ethanal/acetaldehyde;
With the removal of CO₂/ by decarboxylation;
Ethanal/acetaldehyde is <u>reduced</u> to ethanol;
Using the NADH₂/ reduced NAD/ NADH.;
Or correct diagram for 3max
Accept Pyruvate is converted to ethanol = 1 mark (alternative to MP 1 and 3)

Question 5 Total [12]

4

Question			Marking details	Marks Available
6	(a)		Similarities	max 2
			(Both contain) a 5 carbon sugar;	
			Both have two phosphate groups;	
			Both contain (two) nitrogenous bases/ adenine/ organic base;	
			Dinucleotide;	
			Accept adenosine for 1 mark if MP1 and 3 not awarded	
			<u>Differences</u>	1
			FAD only contains one (ring form) sugar and NAD contains 2/	
			One 5C sugar is in its linear form in FAD and both 5C sugars are in	
			ring form in NAD/ NAD contains nicotinamide and FAD contains	
			flavin/ FAD has a three ring base and NAD has one ring base;	
	(b)	(i)	The bond between the {terminal/last two} phosphate groups on ATP;	1
		(ii)	Does not involve the ETC/complex series of carriers and pumps;	Max 2
			Does not need stalked particles/ATP synthetase;	
			Does not need an electrochemical gradient/eq;	
			Does not require oxygen;	
			Accept 'Does not require mitochondria' as alternative to MPs 1, 2,3	
		(iii)	Arrows showing	2
			In the conversion of triose phosphate to pyruvate;	
			After the 5C compound in the Kreb's cycle;	
		(iv)	4;	2
			2;	
	(c)	(i)	In the mitochondrial matrix;	1
		(ii)	Dehydrogenase AND decarboxylase;	1
			Question 6 Total	[12]

Question			Marking details	Marks Available
7	(a)		It stops electrons from PS II being moved to PS I;	4
			So blocking the reduction of NADP ⁺ to NADPH;	
			Cyclic Photo Phosphorylation only involves PSI;	
			is not stopped as the electrons pass from PSI and return to PSI/ eq;	
			And the carrier involved in this is not affected;	
	(b)		Plant cannot generate {NADPH ₂ / NADPH/ reduced NADP} {so Calvin	3
			cycle cannot work/ description of part of process which is prevented};	
			{No glucose/ hexose sugar} will be formed;	
			For respiration;	
	(c)	(i)	1. Ribulose bisphosphate;	3
			2. Glycerate(-3-)phosphate;	
			3. Glyceraldehyde(-3-)phosphate/triose phosphate;	
		(ii)	Catalyses {the reaction between RuBP and carbon dioxide/ to fix	
			carbon dioxide};	1
		(iii)	X ATP;	2
			Y NAD P H ₂ ;	
		(iv)	A CO ₂ Fixation/ 6C intermediate/ RuBP binds to CO ₂ ;	3
			B Regeneration/resynthesis of RuBP;	
			C Reduction;	
			Question 7 Total	[16]

Question			Marking details	Marks Available
8	(a)		Viable count mark scheme	
		Α	Viable count is counting living cells;	
		В	As opposed to a direct count which counts both living and dead cells;	
		С	One cell gives rise to one colony/so N° of colonies = N° of viable cells;	
		D	Use of aseptic technique + example; (eg flaming neck of bottle etc)	
		Е	Sterilisation of equipment and media + example; (eg autoclave/ oven/ radiation)	
		F	Serial dilution;	
		G	Culture needs diluting by ten-fold steps;	
		Н	1cm ³ of original sample added to;	
		I	9cm ³ of (sterile) water;	
		J	(Mixed and) process repeated;	
		K	Known volume(or eg such as 1cm³/0.5 cm³) of microorganisms are added to agar plates;	
		L	Incubated at 25°C (up to 37°C) for 24-48 hours;	
			Must state a temperature and time	
		М	Count N° of colonies in {appropriate plate/appropriate number of colonies};	
		N	Multiply by dilution factor to calculate No of cells per cm ³ in original sample;	
		0	Some comment on unreliability eg reference to clumping of cells;	

[10]

Question 8a Total

Question			Marking details	Marks Available
8	(b)		Synapse mark scheme	
		Α	A synapse occurs between neurones;	
		В	The impulse across a synapse is chemical (rather than electrical);	
		С	Neurotransmitter;	
		D	Acetylcholine/noradrenaline;	
		Е	Is enclosed in synaptic vesicles;	
		F	Arrival of an action potential at the;	
		G	Axon terminal/(pre) synaptic knob;	
		Н	Causes Ca ²⁺ ions to flow into the axon terminal;	
		I	This causes synaptic vesicle to fuse with the <u>presynaptic membrane</u> ;	
		J	Neurotransmitter is released by exocytosis and;	
		K	<u>Diffuses</u> across the <u>synaptic cleft</u> ;	
		L	Where it binds with receptors on the post synaptic membrane;	
		M	Which open sodium channels;	
		N	allowing Na ⁺ to enter;	
		0	The membrane is depolarised;	
			Question 8b Total	[10]

© WJEC CBAC Ltd.